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The consortium is leading the transition to net zero through 
technology and accelerating the rate of  adoption of  new technologies. 
This makes The Energy Consortium, the country’s preeminent Energy 
organization.

When we think of  developing net zero technologies and innovation 
then there is no better microcosm of  the world than India. It is a 
crucible of  every kind of  a test situation that a technology would 
experience in the entire world. We have pockets in India that are so 
well developed that they would possibly mimic any western European 
context, and then there are also pockets of  India that are very green 
and forested remote islands providing a context of  other parts of  the 
world. As a microcosm we believe, this is a great place to come and 
experiment for technologies that would help the whole world become 
net zero.

The idea of  net zero and climate change is a very unique problem 
that has been posed for the first time in our civilizational journey. 
Never before has mankind experienced a global scenario that requires 
a global solution with survival at stake. This presents us with a 
situation where we really have to look at technologies in a global 
context with adoption and efficacies of  technologies also in a global 
context and India is providing that kind of  context. Technologies that 
are either developed in India or those that are developed elsewhere 
but test-bedded in India will provide the right kind of  feedback and 
answers for the world context.

At IITM we have been focused on energy related technologies for 
several decades and the overall ecosystem that we have out together, 
in terms of  faculty, in terms of  research infrastructure, the innovation 
culture, and the student driven ecosystem are all the reasons why one 
will see energy research going that much farther.
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he Energy Consortium was founded in Dec 2021 with a bold vision: to enable 
India’s journey towards a low carbon energy future. In this short span, we 
have eleven global energy majors, that include those in hard to abate and 
hard to electrify sectors as well as those at the forefront of  leveraging digital 
means for energy transition, collaborating with us. We are now participating 
heavily in two major alliances, one focused on energy storage and another 
on green fuels. We are actively partnering and advising government agencies 
on topics of  national and international importance and have represented the 
cause at the COP28 in Dubai. This has allowed us to drive collective action at 
scale and emboldens us to contribute more assertively towards the net zero 
journey of  India.

As per the Ministry of  New & Renewable Energy data, India, at the 
end of  2023, became 4th globally in Renewable Energy Installed Capacity, 
4th in Wind Power capacity and 5th in Solar Power capacity. We recognize 
that the time has come to elevate our mission. We must transition from just 
enabling progress to actively accelerating the realization of  a net zero future. 
Together with our partners in industry and government, we can ensure that 
net zero is not just an aspiration, but an imminent reality for India and the 
world. Building on our vision, we are now in mission mode, fully dedicated to 
Accelerating Net Zero at the Energy Consortium.

In this second edition of  our short series of  white papers we bring 
together seminal topics that are going to shape how we accelerate achieving 
net zero.

I am glad to have the real world perspective from a global energy leader, 
Aramco, available to our readers. A perspective that provides extremely 
insightful and vital commentary on the need as well as approach that 
organizations and governments must take to realize at-scale deployment of  
carbon capture and its utilization or storage.

Further, and given the central role played by the electric power grid in 
our ability to meet energy transition targets, we are happy to include an 
authoritative overview article that speaks about the electrical power markets 
and how they are undergoing a rapid transformation during the digital 
divide and energy transformation.

Finally, we have two progressive updates, one on the role of  computing 
for developing clean energy technologies and another on the ability of  
heating and cooling solutions to significantly and favourably impact the 
decarbonization journey.

The global transition to a net-zero carbon economy is not just an 
environmental imperative but also an economic opportunity. By leading the 
charge in clean energy innovation and carbon capture, we are paving the way 
for a sustainable future that benefits both our planet and future generations.
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As a global energy leader, 
Aramco is driving 
collaboration across the 

world to help address some of  the 
most pressing global challenges 
and support a more sustainable 
energy future. Aramco has a 
global research presence in 
several innovation hubs to 
leverage world-class scientific 
expertise with a view to speeding 
up lower-carbon energy solutions 
and technology development. 
Aramco has also recently joined 
the Energy Consortium at the 
Indian Institute of  Technology 
Madras, with a focus towards 
accelerating research and 
innovation on lower-carbon 
energy technologies. By 
developing transformative 
technologies, Aramco aims to 
contribute to the global lower-
carbon economy. 

CCUS in the global 
energy transition puzzle
Despite the remarkable 
progress of  renewable energies 
in the global energy mix and 
the significant improvement 
in energy efficiency, global 
greenhouse gas emissions have 
not decreased enough to put the 
world on a net-zero emissions 
trajectory. The urgency to act 
on climate, combined with the 
scale of  ambitions to reduce 
global greenhouse gas emissions, 
means realistic approaches are 
needed worldwide — leveraging 
various potential solutions and 
technologies. Deployment of  
emerging technologies could be 
key towards reducing greenhouse 
gas emissions.

Carbon Capture, Utilization 
and Storage (CCUS) is a suite of  
technologies that can contribute 
to reducing CO2 emissions from 
industrial facilities, as well as 
CO2 already accumulated in the 
atmosphere. As such, CCUS can 
help reduce emissions in key 
sectors such as cement, steel, 
and chemicals. In the cement 
industry specifically, about 
50% of  CO2 emissions from 
cement manufacturing are not 
related to fossil fuel. A cement 
facility with 100% renewable 
electricity would therefore still 
release significant CO2 into the 

atmosphere. CCUS value goes 
beyond emissions management 
and into opportunities to harness 
captured CO2 in emerging 
lower-carbon businesses, such 
as hydrogen, e-fuels, and other 
lower-carbon products. Captured 
CO2 could be reused or recycled, 
following a circular carbon 
economy approach. 

CCUS technology is already 
deployed across 50 facilities 
worldwide, storing around 51 
million tons of  CO2 in 2024, 
according to the Global CCS 
Institute. In 2024, there were 628 
CCUS projects at various stages 
of  development, an increase of  
about 60% from 2023. However, 
according to McKinsey, global 
CCUS capacity would still need 
to grow over 100 times reaching 
4-6 gigatons CO2 by 2050, to meet 
current announced net-zero 
targets. 

 
Aramco perspectives on 
CCUS
CCUS aligns with our business 
growth aspirations and emissions 
reduction goals, such as 
Aramco’s ambition to achieve 
net-zero Scope 1 & 2 greenhouse 
gas emissions across its wholly-
owned operated facilities by 2050.  

Aramco has robust 
experience in large-scale and 
complex engineering projects, 
and has also been operating one 
of  the first large scale CCUS 
projects in the Gulf  region 
since 2015, with the capacity to 
capture up to 800,000 tons of  CO2 
per year. The CO2 is captured 
from a natural gas liquefaction 
plant located in Hawiyah, 
purified, transported through an 
85-kilometer pipeline, and then 
injected into the Uthmaniyah 
oil field, where it is used for 
enhanced oil recovery. The 
project is equipped with an 
extensive CO2 monitoring and 
surveillance program, with 
seismic sensors to monitor the 
CO2 plume and breakthrough 
speed. 

In another project, 
hydrocarbons were converted 
to lower-carbon hydrogen, and 
then ammonia for export. In 2020, 
we demonstrated the shipment 
of  high-grade blue ammonia 

Despite the remarkable 
progress of renewable 
energies in the global energy 
mix and the significant 
improvement in energy 
efficiency, global greenhouse 
gas emissions have not 
decreased enough to put 
the world on a net-zero 
emissions trajectory
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from Saudi Arabia to Japan. 
The associated carbon dioxide 
emissions were captured and 
transported for utilization in two 
different locations: for methanol 
production at a SABIC facility 
and enhanced oil recovery at 
Aramco’s Uthmaniyah oil field. 
Aramco is also involved in two 
demonstration plants that aim 
to capture CO2 from industrial 
facilities, and combine it with 
renewable hydrogen to produce 
e-fuels, which are produced using 
renewable energy sources to 
generate electricity that drives 

the production of  hydrogen 
via electrolysis. This hydrogen 
then reacts with the captured 
CO2 to create liquid or gaseous 
hydrocarbons, substituting 
conventional fuels. 

Additionally, Aramco has 
established one of  the world’s 
largest venture capital funds, 
Prosperity 7, through its venture 
capital arm Aramco Ventures, 
to invest in low-carbon solutions 
that include CCUS technologies. 
In 2025, Prosperity7 is expected 
to open an office in Bangalore, 
India.

The TV-PAR method will 
identify sources of volatility, 

capture short-term 
fluctuations, and understand 

how renewable energy 
impacts price stability. TVP-

VAR model is a statistical 
tool that can capture the 

changing nature of economic 
relationships over time
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Aramco is currently working 
with partners to build one of  the 
world’s largest Carbon Capture 
and Storage (CCS) hubs in Jubail, 
in the Eastern Province of  Saudi 
Arabia. First phase construction 
is expected to capture up to 9 
million tons of  CO2 from three 
Aramco gas plants and other 
industrial sources.  

Aramco is also investing in 
CCUS research and development. 
Our R&D includes developing 
advanced materials for CO2 
capture, utilizing CO2 in new 

energies and chemicals, and 
storing CO2. 

Enabling CCUS 
deployment at scale
However, the current pace of  
global CCUS deployment is not 
aligned with net-zero ambitions. 
The technology faces several 
deployment challenges, including 
its risk profile. These challenges 
are country and industrial sector 
dependent, but generally revolve 
around lack of  policy support, 
regulatory barriers, finance, and 
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technology perception.
From a policy perspective, 

governments need to support 
revenue stream growth to 
incentivize CCUS deployment. 
Successful policy instruments 
applied to renewable energies 
are relevant to CCUS, such as 
grants, public procurement, 
obligations or feed-in-tariffs. 
The concept of  a CCS hub 
is proving to be an effective 
business model for scaling-up 
CCUS, and governments have 
a key role to play in facilitating 
stakeholder engagement — as 
well as supporting CO2 transport 
and storage infrastructure 
development. 

Often, countries may also 
lack clear regulatory frameworks 
across the CO2 value chain. CO2 
is often classified as waste, but in 
the era of  CCUS there is a need 
to reconsider CO2 classifications, 
streamline CO2 storage permits, 
clarify long term CO2 storage 
liability, and establish standards 
across the CCUS value chain.

Mobilizing financial 
resources in support of  large 
scale CCUS projects also remains 
an important challenge, as many 
financial institutions lack clear 
guidelines for such projects. The 
finance sector should ensure 

CCUS is part of  their climate 
strategies, and is eligible for 
sustainable finance.

Public and private 
stakeholders should also work 
together to facilitate knowledge 
exchange on CCUS. This involves 
exploring opportunities for 
international collaboration 
and strategic partnerships in 
CCUS technologies, along with 
investment opportunities.

Aramco believes CCUS may 
be an important component of  
the global energy transition 
puzzle, and aims to play a role in 
its development and deployment. 
With a focus on research and 
development, investment in 
a CCS hub, and collaboration 
with partners, Aramco aims to 
capture and store millions of  
tons of  CO2 annually, as part 
of  its efforts to contribute to a 
lower-carbon future. However, 
deploying CCUS at scale 
requires overcoming several 
challenges. Governments, 
industries, and civil society must 
come together to overcome these 
hurdles to enable widespread 
adoption of  CCUS. By working 
together, we can unlock new 
opportunities for growth, job 
creation, and more sustainable 
development.

From a policy perspective, 
governments need to support 
revenue stream growth to 
incentivize CCUS deployment. 
Successful policy instruments 
applied to renewable energies 
are relevant to CCUS, such as 
grants, public procurement, 
obligations or feed-in-tariffs
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Introduction

Heating and cooling systems 
are central to global energy 
consumption, especially in 
industrial and domestic settings. 
In 2015, heating accounted for 
approximately 31,000 terawatt-
hours (TWh) of  thermal energy 
worldwide, primarily from fossil 
fuels. Similarly, the demand for 
cooling is rising exponentially, 
driven by climate change and 
urbanisation. Addressing these 
challenges requires innovative 
technologies and systemic 
changes to enable sustainable, 
efficient, and low-carbon 
solutions.

Global Demand and 
Challenges
Heating demand comprises 
industrial processes (50%), 
domestic space heating (45%), 
and smaller fractions for hot 
water and cooking. Before the 
Ukraine war, much of  this 
demand was met with natural 
gas, particularly in Europe, 

North America, and China. 
The conflict underscored the 
vulnerabilities of  fossil fuel 
dependence, intensifying the 
urgency for alternative solutions.

Cooling demand has surged 
as well. In 2016, the United States 
consumed over 620 TWh for 
cooling, compared to 320 TWh in 
1990. In India, cooling demand, 
which was negligible in 1990, 
had risen to 90 TWh by 2016. 
Projections estimate an 800 GW 
increase in generation capacity 
by 2050 to meet this growing 
need. The increased reliance 
on cooling significantly strains 
power grids, particularly in 
tropical countries, where cooling 
can account for up to 50% of  peak 
power demand.

The carbon intensity of  
energy systems exacerbates 
the environmental impact 
of  heating and cooling. For 
example, India’s grid emits 700 
grams of  CO2 per kilowatt-hour 
(kWh) of  electricity, making 
decarbonisation essential. Urban 
heat islands further compound 
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cooling needs, creating localised 
hotspots that perpetuate a 
vicious cycle of  increased energy 
consumption.

Decarbonisation 
Strategies
Electrifying heating systems is 
a critical first step. Traditional 
electric heating systems offer 
a coefficient of  performance 
(COP) of  around 1, meaning they 
convert one unit of  electricity 
into nearly one unit of  heat. In 
contrast, advanced systems like 
heat pumps achieve COP values 
greater than 3 by transferring 
ambient heat, making them 
significantly more efficient. 
Heat pumps use refrigerants to 
transfer heat from a cooler region 
to a warmer one. They offer 
dual functionality, providing 
both heating and cooling. By 
optimising waste heat utilisation, 
heat pumps can achieve COP 
values as high as 5, making 
them both economically and 
environmentally advantageous.

Countries around the 
world are adopting innovative 
strategies to decarbonise heating 
and cooling systems. With its 
hydroelectric-powered grid 
emitting less than 20 grams 
of  CO2 per kWh, Norway 
has significantly reduced 
domestic heating emissions 
through widespread heat 
pump adoption. Japan’s “Eco 
Cute” program, which uses 
CO2 as a refrigerant in heat 
pumps, has halved emissions 
compared to conventional 

electric water heaters. In the 
United States, cities like New 
York are retrofitting buildings 
with energy-efficient systems, 
leveraging heat pumps to lower 
emissions and energy costs. 
China is replacing coal-fired 
heating in northern cities with 
geothermal and solar thermal 
networks, reducing CO2 
emissions by millions of  tons 
annually. Meanwhile, India is 
piloting solar-assisted cooling 
systems, such as photovoltaic-
integrated systems in Gujarat, 
which are projected to reduce 
grid emissions by 40% during 
peak demand. These examples 
underscore the global shift 
toward sustainable heating and 
cooling solutions.

Transitioning to sustainable 
heating and cooling systems can 
yield substantial CO2 reductions. 
Replacing coal- and natural 
gas-powered heating systems 
with heat pumps powered by 
renewable electricity can reduce 
emissions by up to 70%, with 
individual heat pump systems 
in Europe saving 2-4 tons of  CO2 
annually. High-efficiency systems 
and waste heat utilisation can cut 
emissions by 30-50% for cooling. 
In India, where cooling demand 
is expected to surge, emissions 
could increase by 400 million 
tons annually if  left unchecked. 
However, integrating renewable 
energy with advanced cooling 
technologies could mitigate 
more than half  of  this impact, 
significantly reducing the carbon 
footprint.

Countries around the world 
are adopting innovative 

strategies to decarbonise 
heating and cooling systems. 

With its hydroelectric-
powered grid emitting less 
than 20 grams of CO2 per 

kWh, Norway has significantly 
reduced domestic heating 

emissions through widespread 
heat pump adoption
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Technological 
Advancements
Technological advancements 
are focused on high-temperature 
heat pumps, refrigerants, Phase 
Change Materials (PCMs), and 
renewable integration with grid 
decarbonisation.

The EnERG lab, a constituent 
lab of  the Energy Consortium at 
IITM, has deployed heat pump 
technology up to 120°C, sufficient 
for many industrial processes, 
such as food processing and 
textiles. Efforts are underway 
to develop systems capable of  
reaching 200°C, further expanding 
their applicability. On refrigerants 
natural refrigerants like CO2 are 
gaining traction due to their low 
environmental impact. However, 
challenges such as high ambient 
temperatures and cost barriers 
must be addressed to enable 
widespread adoption, especially in 
regions like India.

To fully exploit the benefits 
of  heat pumps, it is sometimes 
necessary to store thermal 
energy. PCMs store thermal 
energy by transitioning between 
solid and liquid states. For 
example, ice can store cooling 
energy, while wax can store heat. 
Efforts are on at the gas hydrates 
lab led by Prof  Rajnish Kumar 
at IITM to identify suitable 
hydrate materials that can 
effectively store cooling energy 
at temperatures in the range of  
10 – 14°C, which can significantly 
improve cooling systems 
efficiency as these operate at 
temperature required in the 

HVAC industry unlike traditional 
PCM which often operate below 
freezing.  Materials can optimize 
heating and cooling systems by 
providing on-demand thermal 
energy, although their efficiency 
is limited by cycle durability and 
temperature alignment.

To maximise the potential 
of  electrification, decarbonising 
the electricity grid is integral. 
Countries like Norway, Bhutan, 
and Germany have made 
significant progress in reducing 
grid emission factors. India’s grid 
emissions have already decreased 
from 850 to 700 grams per kWh, 
with targets set for further 
reductions.

Emerging Technologies
Thermochemical heat pumps, 
which utilise chemical reactions 
for heating and cooling, show 
great promise. These systems 
harness industrial waste heat, 
achieving high efficiency and 
significant decarbonisation 
potential. Similarly, desiccants, 
which separate moisture removal 
from cooling, offer substantial 
efficiency gains, particularly in 
humid regions.

The Path Forward
Decarbonising heating and 
cooling systems is critical for 
achieving global climate goals. 
This requires a multi-pronged 
approach. By integrating the 
above strategies, we can mitigate 
the environmental impact 
of  heating and cooling while 
sustainably meeting growing 
global demand.

To maximise the potential of 
electrification, decarbonising 
the electricity grid is integral. 
Countries like Norway, 
Bhutan, and Germany have 
made significant progress 
in reducing grid emission 
factors. India’s grid emissions 
have already decreased from 
850 to 700 grams per kWh, 
with targets set for further 
reductions
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Abstract:
Electrical power markets 
are undergoing a rapid 
transformation during the 
digital divide and energy 
transformation. There are many 
parameters which are assumed 
to be static, are changing 
dynamically. With continuous 
change in load and renewable 
generation, electricity load 
and price, which are strongly 
interdependent, forecasting of  
these parameters are challenging 
as they exhibit wide and varied 
volatility, which makes it 
difficult. The output of  these 
parameters are used in a series 
of  other programs which are 
used to compute and determine 
values which are used to help 
making decisions. 

Smart Power Grids utilizing 
Information and Commutation 
Technology (ICT) accelerate 
the need for the targets towards 
net zero and de-carbonization. 
This paper attempts to address 
the issues of  techniques and 
methodologies needed for 
realizing them. Real Time, Day 
Ahead, Balancing and Green 
Energy constitute a major 
part of  Dynamic Electricity 
Markets that require complex 
computational calculations for 
determining various values like 
market clearing price (MCP), 
market clearing volume (MCV) 
required for electric energy 
trading. Power exchange for 
electricity markets uses digital 
trading methods over short 
durations. Application of  Block 
chain based techniques for 
energy trading is the need of  
the hour for efficient dynamic 
pricing in electricity markets.

Dynamic Power pricing for 
energy transition towards green 
renewable energy for achieving 
net zero and de-carbonization is 
considered in this work. Energy 
internet and energy storage are 
gaining importance in the era 
of  energy transition.  Energy 
security, sustainability and 
reliability of  power grids are 
strongly influenced by dynamic 
electric markets and parameters 
which are influenced by dynamic 
pricing. Case study of  important 
applications using recent 

advanced technological methods 
are presented to validate the need 
for dynamic markets for energy 
transition towards net zero 
targets.

Keywords: Dynamic Markets, 
Electricity Pricing, Real time Day 
Ahead Markets, 

Introduction:
Competition and Cooperation 
of  electricity utilities are 
the basis of  Deregulation 
and Restructuring of  
Generation Transmission 
and Distribution companies 
form vertically-integrated 
dependent monopolistic entities 
to horizontally-separated 
autonomous and independent 
ventures that encourage active 
private participation. The private 
participation in generation has 
led to competition in the supply 
of  electricity from various 
vendors. This has led to variation 
in the prices of  power generation 
in electricity markets, where 
generation companies (GENCOs) 
compete with each other to ‘sell’ 
or ’supply’ power at a low price. 

The distribution companies 
(DISCOs), also compete to ‘buy’ 
or ‘purchase’ power from the 
GENCOs. The various ‘Buy’ 
and ‘Sell’ offers introduces a 
‘variable’ price of  power in 
contrast to the fixed price. 
This variable price expressed 
in ‘Rs. per MWh’ has led to 
the development in ‘trading 
in electricity markets’. This 
successful trading in electricity 
markets has been instrumental 
in developing various online 
trading platforms like PXIL, IEX, 
etc. Many more trading platforms 
have emerged leading to a 
vibrant and dynamic electricity 
markets for trading of  power.

Single auction and double 
auction markets are emerged to 
determine the market clearing 
price ‘MCP’ and market clearing 
volume ‘MCV’ which leading 
to dynamic electric markets. 
Further, the variation in the 
generation and load has led to 
the variation in the electricity 
price. Forecasting of  Generation, 
Load, Electricity Price, etc. 
play an important role in the 
operation of  dynamic electricity 

Real Time, Day Ahead, 
Balancing and Green Energy 
constitute a major part of 
Dynamic Electricity Markets 
that require complex 
computational calculations 
for determining various 
values like market clearing 
price (MCP), market 
clearing volume (MCV) 
required for electric energy 
trading. Power exchange 
for electricity markets uses 
digital trading methods over 
short durations
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markets. Load Forecasting and 
Price Forecasting are important 
constituents that contribute to 
the development of  Dynamic 
Electricity Markets.

Dynamic Electricity 
Markets (DEM), has further 
led to Dynamic Energy 
Markets which use advanced 
technological frameworks and 
policies in transition to energy 
sustainability. Dynamic Energy 
Markets provides a more open 
and challenging problem that 
encourages renewable energy 

resources and energy storage to 
participate in electricity markets. 
Based on the load demand, single 
auction and double auction 
markets are in use for effective 
competition ensuring dynamic 
electricity markets. 

This paper addresses 
important issues which are 
related and effect the operation 
of  Dynamic Electric and Energy 
Markets. Forecasting, Strategic 
Bidding, Auction Markets, 
Ancillary services, Pricing of  
Real and Reactive Power, etc.

Electric Markets
Electricity Markets consist of  
three important types, namely, 
Monopoly, Oligopoly and Perfect 
Competition. Fig 1 shows the 
three types of  electricity markets 

There are three types of 
electric markets 

Monopoly electric market 
is a vertically integrated 
structure where all of  the assets 
of  generation, transmission, 
distribution, wholesale / retail 
sale of  energy and operation 
functions are owned and 
operated as one entity 

Oligopoly electric market 
consists of  a few large utilities 
which dominate the selling of  
power with few substitutes for 
them. Oligopoly market structure 
restrict output or prices to 
achieve higher returns. The key 
characteristic of  an oligopoly 
market is that not one of  the firm 
can keep the others from having 
significant influence over the 

market. In this type of  market 
each producer maximizes the 
profit 

Perfect competition 
electric market consists of  a 
price taking producer that wishes 
to maximize its profits by bidding 
his power production at his own 
marginal cost. Game theory plays 
an important role in competitive 
electricity markets.

Competition in dynamic 
electricity markets involves 
the interaction of  the following 
four layers, namely, physical 
producers, financial traders, 
buyers and sellers. The 
competition of  between the 
players is dependent on the 
volatility of  electricity prices. 
Power generation from different 
types of  producers like hydro 
thermal, pumped storage, etc. 
introduces uncertainty under 
competition in the operation 
and planning of  dynamic 
electricity markets. Forward 

Competition in dynamic 
electricity markets involves 

the interaction of the 
following four layers, namely, 
physical producers, financial 
traders, buyers and sellers. 
The competition of between 
the players is dependent on 

the volatility of electricity 
prices. Power generation 

from different types of 
producers like hydro thermal, 

pumped storage, etc.

Fig. 1. Three types of electricity markets
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Fig. 2. Dynamic Electricity Markets and Market Dynamics

(a) Dynamic Electricity Markets 

(b) Market Dynamics 

Markets: The forward market 
schedules production a day 
in advance, and then a spot 
market that balances demand 
and supply immediately before 
operation. In such markets, 
generators have incentives to 

engage in intertemporal price 
discrimination. Forward markets 
are a type of  electricity market 
that allow participants to lock in 
energy prices and quantities for 
the future. Forward markets can 
be medium-term or long-term.

Dynamic Electricity 
Markets and Electricity 
Pricing 
Dynamic electric markets consist 
of  pricing in real time markets, 
where both generators and loads 
provide ‘supply’ and ‘buy’ bids 
in real time. Fig 2 shows the 
schematic of  dynamic electric 
markets and market dynamics.

Dynamic pricing in real time 
markets is concerned with the 
delivery of  electricity one hour 

before the closure of  the market. 
Electricity Pricing and Volatility 
play an important role in the 
dynamic electric markets.
 
Electricity Pricing and 
Price Volatility
Forecasting of  Electricity 
price is important aspect in the 
operation of  Dynamic Electricity 
Markets. A common feature of  
restructured electricity markets 
is price volatility, due in large 
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part to the difficulty in storing 
electricity for the purpose of  
smoothing price fluctuations. 
Price volatility is a common 
feature in deregulated wholesale 
electricity markets which is a 
consequence of  inelastic demand 
and power generation. 

Real Time Pricing:
Real time pricing (RTP) is a 
model that adjusts process in 
response to market changes of  
supply and demand. RTP, also 
known as dynamic pricing, 
is used to adjust the price 
of  electricity based on the 
current supply and demand. 
RTP is concerned with changes 
involved in the electricity price 
in small intervals based on the 
market conditions. RTP plays 
an important role in smart grid 
infrastructure. Dynamic pricing 
involves making adjustments 
to the electricity price in real 
time under market dynamics.  
Real-time pricing (RTP) tariffs 
are charged over very small 
intervals to reflect the true 
nature of  fluctuating energy 
prices. RTP reflects the utility’s 
production cost in real time to 
supply the consume with various 
choices for different applications 
like EV charging, residential 
applications, etc.

Time-Varying Parameter 
Vector Auto Regression 
(TVP-VAR) Method
Time-Varying Parameter Vector 
Auto Regression (TVP-VAR) is a 
method is used for the addressing 
the price volatility in dynamic 
energy markets. The TV-PAR 
method will identify sources of  
volatility, capture short-term 
fluctuations, and understand 
how renewable energy impacts 
price stability. TVP-VAR model 
is a statistical tool that can 
capture the changing nature 
of  economic relationships 
over time. It’s used to analyze 
macroeconomic issues and other 
areas where parameters may 
change over time. TVP-VAR 
forecasts economic variables 
and analyze structural changes 
in time series, which is used to 
predict price changes. TVP-VAR 
models can be used to study the 
relationship between price and 
other economic variables in the 
electric market. These models 
can capture how the relationship 
between variables changes over 
time. TVP-VAR models are a 
type of  time series model that 
explain how economic variables 
change over time. They model 
the coefficients of  the model as 
stochastic processes, such as 
random walks. 

Figure 3 shows the typical  timeseries plot 
of   electrical prices with fuel using TVPVAR

The TV-PAR method will 
identify sources of volatility, 

capture short-term 
fluctuations, and understand 

how renewable energy 
impacts price stability. TVP-

VAR model is a statistical 
tool that can capture the 

changing nature of economic 
relationships over time

Fig. 3. Time series plot of varying electrical 
prices with fuel (crude oil) using TVPVAR
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Load and Price 
Forecasting
Load Forecasting
Linear regression and Neural 
Network models are used to 
forecast the demand. The results 
of  the above models are compared 
and the better model is retained. 
The relation between day-ahead 
price and the old values of  price 
is studied using autocorrelation. 
Using the forecasted load and 
externally obtained temperature 
and fuel cost data the price is 
forecasted using a modified 
Neural Network. In many 
countries, the power industry is 
moving towards a competitive 
framework, replacing the highly 
regulated procedures. The 
main objective of  an electricity 
market is to decrease the cost of  
electricity through competition. 
Competition results in an 
efficient utilization of  resources. 
The electrical energy cannot 
be appreciably stored, and the 
power system stability requires 
constant balance between supply 
and demand. Load serving bodies 
will get to know the amount of  
power consumers are likely to 
use and the ways of  securing it 
cheaply. Large industries will 
schedule their schedulable loads 
based on the variation of  price 
with time. The companies that 
trade in electricity markets make 
extensive use of  price prediction 
techniques either to bid or to 
hedge against volatility.

Stochastic models like Auto 
Regression, Moving Average, 
Auto Regressive Moving Average 
are stationary processes – 
they work well if  the error 
distribution has a mean equal to 
zero and variance constant. So, 
we cannot use them to forecast 
the price of  electricity (Mean 
Average Percentage Error 
varies from 4% to 10%), Linear 
regression models can only 
forecast the week average prices 
whereas non-linear regression 
models demand us to assign exact 
non-linear function for better 
forecasts
Load forecasting – Inputs
The following inputs are 

considered for demand 
forecasting
1. Temperature (maximum 
temperature of  the day in oC)
2. Hour of  day
3. Day of  the week
4. A flag indicating if  it is a 
holiday/weekend
5. Previous day’s average load (in 
MWh)
6. Load from same hour the 
previous day
7. Load from same hour and 
same day from previous week

Load forecasting – Case 
Study
The day-ahead demand is 
forecasted using Linear 
regression and Neural Networks. 
Data of  many parameters like 
hourly temperature, demand, 
electricity price and fuel costs 
were obtained for a period of  four 
years for the residential area of  
New England ISO market from 
www.iso-ne.com. The system is 
trained using the data for years 
2004 – 2007 and the model is then 
tested for the year 2008

Linear Regression:
The output is assumed to be 

linearly dependent on the inputs 
y = β0+ β1x1 + β2x2 + β3x3 + … + 

βkxk + e 
βis are the regression 

coefficients that are found by 
the least square error method. 
Least square function (L) for ‘n’ 
observations is 

  L =  ∑ni=1(yi - β0 - ∑kj=1 βj 
xij )2

3. The above equation on 
differentiating with respect to 
β0 and βjs will give k+1 linear 
equations and all βs can be found

The load data for 2008 is 
compared with predicted data 
obtained from the model to 
ascertain the accuracy of  the 
model

The accuracy is statistically 
determined using the Mean 
Absolute Percentage Error 
(MAPE) as the metric

MAPE is defined as : 
MAPE (%) = {100 ∑ni=1 | 

(Actuali - Forecasti) / Actuali | 
}/n

In many countries,  
the power industry is moving 
towards a competitive 
framework, replacing the 
highly regulated procedures. 
The main objective of 
an electricity market is 
to decrease the cost of 
electricity through  
competition
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Figure 4 shows the plot comparing the demand available in the 
data with that predicted by the model (LR) along with the MAPE. As 
can be seen in the plot the peaks are not properly captured as they 
are non-linearly dependent. MAPE of  6% for demand forecast is not 
good. Hence, Neural network is used. The Mean Absolute Percentage 
Error of  the forecasted load throughout the year 2008 using Linear 
Regression is as shown below.

Load Forecasting using 
Neural Networks:

A two-layer feed forward network 
with demand as the sole output is 
used to forecast the demand. The 
weights generally get assigned 
such that an input with small 
values will have larger weights 
compared to inputs with large 
values. So, the inputs are all 
initially normalized to the range 
[0,1] so that the system is not 
confused with different scales 
of  weights, using the relation 
Scaled_x = (x – xmin)/(xmax – 
xmin)

The fully connected neural 
network is initially assigned 
random weights and biases 
between -0.5 and 0.5. The scaled 
inputs are fed into the network 
and the output ‘yo’ is obtained 
which is compared with desired 
output ‘do’. The output error is 
defined as  

erroro  = yo(1- yo)(do - yo)
Now, using the back 

propagation algorithm 
weights(w) and biases(Ɵ) 
corresponding to the path from 
the hidden layer to output layer 
are updated and then the weights 
in the path from input to hidden 
layer are updated

∆wij = l.errorj.oi; w’ij = wij + 
∆wij ; ∆Ɵj = l.errorj

where, l is the learning 
rate and l = 1/k where k is the 
number of  iterations performed 
by the network

Figure 5 shows the load 
forecasting using ANN. The 
input is fed into the updated 
neural network and the process 
is continued until one of  the 
following conditions are achieved. 
The ∆wij of  all the paths are 
below a minimum value (0.01). 
The total number of  cycles of  
training completed is more 
than a maximum value (60000). 
The trained neural network is 
now used to predict the load of  
year 2008 and the model data is 
compared to the actual data

A two-layer feed forward 
network with demand as 

the sole output is used 
to forecast the demand. 

The weights generally get 
assigned such that an input 
with small values will have 

larger weights compared to 
inputs with large values

Fig. 4. Load Forecasting and error in Forecasting
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Figure 6 shows the ANN approach to load forecasting.

The input is fed into the 
updated neural network and 
the process is continued until 
one of the following conditions 
are achieved

Fig. 5. Load Forecasting using Artifical Neural Networks

Fig. 6. Artifical Neural Network architecture for Load Forecasting

Fig. 7. ANN approach to Load Forecasting and error
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A plot comparing the demand available in the data with that 
predicted by the model (NN) along with the MAPE is shown in figure 7. 
As can be seen in the plot the peaks are also properly captured. MAPE 
of  1.4% for demand forecast is a very good forecast. The MAPEs of  the 
forecasted loads throughout the year 2008 was found to be 6.4% for the 
Linear Regression model and 1.78% for the Neural Network model. 
Hence, Neural Network model is preferred over Linear Regression 
model to predict the demand in the market

Fig.8. The dependance of Electricity 
Price on Load and its price and volatility.
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The following inputs are considered to forecast the price of 
electricity:
1. Temperature (0C)
2. Hour of  day
3. Day of  the week
4. A flag indicating if  it is a holiday/weekend (binary)
5. Forecasted load (MWh)
6. Previous day’s average load (MWh)
7. Load from the same hour the previous day (MWh)
8. Load from the same hour and same day from the previous week 
(MWh)
9. Previous day’s average price ($/MWh)
10. Price from the same hour the previous day
11. Price from the same hour and same day from the previous week
12. Previous day’s fuel price (S/litre)
13. Previous week’s average fuel price

Price Forecasting  
using ANN

The price is significantly 
correlated with 24-hour earlier 
price and keeps reducing for the 
previous days. The price is more 
significantly correlated with 
168-hour earlier price (7 days). 
Although the auto-correlation 
with respect to previous hour 
price is as high as 0.9, the data 
cannot be used as input since 
it is not available at the time of  
forecasting. Hence, previous day 
same hour price and previous 
week same hour prices are 
considered to forecast the price. 
The neural network is initially 
run in the normal manner and 

the weights and biases are stored. 
The Mean Square Error of  the 
whole samples that were used to 
train the network is calculated. 
The MSE is now added to the 
output and this is considered as 
the new output. The training is 
continued with the new output 
and the stored weights.T he 
MAPEs of  the two iterations are 
compared and the algorithm 
continues until new MAPE is 
less than the old. Apart from 
the MSE method, the problem 
of  over-fitting and local minima 
are addressed. Over-fitting is 
the inability of  the network to 
perform on the test data despite 
working well while training. 

Figure 9 shows the Autocorrelation of  electricity price obtained as 
explained above.

Fig. 9. Autocorrelation of electricity price
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Fig 10. Price Forecasting using neural Networks

Figure 10 shows the ANN approach to price forecasting.

Figure 11 shows the architecture of  price 
forecasting using neural networks.

The same data that was 
used in the earlier case study 
to forecast the load is used to 
forecast the price. The model 
is trained using data from 2007 
– 2008 and forecasted for the 

year 2008. The forecasted price 
is compared with the actual 
price for the whole year. The 
correctness of  the model is 
determined using the statistical 
metric MAPE

Fig 11. Architecture of Price Forecasting using neural Networks
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Price forecasting – Case 
Study  
The error is acceptable 
throughout the year but during 
the months of  May and June 

the error is high because of  the 
fluctuating demand. The Mean 
Absolute Percentage Error of  the 
forecasted price is as shown in 
figure 13.

Figure 12 shows the results of  ANN approach to price forecasting.

Fig 12. ANN Approach to Electricity Price Forecasting
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Dynamic Energy Market 
consist mainly of  
electricity pricing from 

generation to generation through 
transmission. There are many 
transmission pricing schemes.  
This consists of  the following 

Evaluation of  the various 
embedded cost transmission 
pricing schemes. Social Welfare 
Maximization (i.e., in case of  
constant load it is minimization 
of  total generation cost). 
Calculation of  the nodal pricing 
and Congestion management 
studies. Transfer capability 
evaluation in deregulated 
environment. Evaluation of  
transmission pricing such as 
Embedded cost pricing and 
Incremental cost pricing. 
Embedded cost is evaluated 
using the postage stamp method 
and MW-mile method and 
Incremental cost is evaluated 
using (SRMC) method.  
Congestion management 
studies have been carried out 
by imposing restrictions on the 
transmission capacity of  the 
lines and considering severe 
contingencies. Available Transfer 
Capacity calculations have 
been done considering different 
contingencies including bilateral 
and multilateral transactions.

Evaluation of  Embedded Cost 
Pricing for an 8-bus network. 
Congestion management Studies, 
Calculation of  Nodal pricing and 
Transfer Capability Calculations 
in Deregulated Markets for 11-

zone DC network and 23- Bus AC 
network

Open Transmission Access 
(OTA): Requirement That the 
Transmission Network Owners 
make Their Systems Available to 
Other Players In The System.

Independent System 
Operator (ISO): Supreme entity 
to control the transmission 
system which is responsible for 
secure system operation and to 
maintain system reliability.

Schedule Coordinator(SC) /
Broker:  Match electric energy 
supply and demand based on bid 
prices

Bilateral Transactions: 
suppliers and consumers 
independently arrange trades 
without causing any limit 
violations under postulated 
contingencies, the system 
is judged to be capable 
of  accommodating these 
transactions

Multilateral Transactions: 
It is a trade that is arranged by 
energy brokers and involves 
more than two parties. 

ongestion: Condition where 
demand for power transmission 
exceeds system’s capability 

encos: Operates and 
maintains generating plant 

Discos and Retailers
Discos maintains the 

distribution network and 
provides facilities for electricity 
delivery. Retailers provide 
electric energy sales to end 
consumers.

Evaluation of the various 
embedded cost transmission 

pricing schemes. Social 
Welfare Maximization (i.e., 

in case of constant load 
it is minimization of total 

generation cost). Calculation 
of the nodal pricing and 
Congestion management 

studies

TRANSMISSION 
PRICING IN DYNAMIC 
ENERGY MARKETS
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Embedded Cost 
Transmission Pricing consists of  
two methods like Postage stamp 
method and MW-Mile method. 
Incremental Cost Transmission 
Pricing consists of  two methods 
like Short Run Marginal Cost 
Pricing (SRMC) and Long Run 
Marginal Cost Pricing (LRMC)

Embedded Cost Pricing  
Postage Stamp Method is a 
simple method where the 
transmission charges based 
on weight of  the package 
magnitude of  transaction power. 
It is charged at a flat rate on per 
MW basis where short distance 
customers may bypass the system 
due to high transmission prices
Rt = TC * Pt / P peak
where, Rt - transmission price for 
transaction t in Rs
TC – total transmission  
charges in Rs
Pt    - load at time of   
system peak load          
condition in MW
Ppeak  -system peak load in MW

MW-Mile Method:
The transmission network 
capacity use for firm 
transmission services including 
wheeling transactions, by 
including the path and distance 
traveled by the wheeled power. 
There is no dispute over order of  
wheeling transaction. It mitigates 
the threat of  uneconomical 
transmission bypass by providing 
better cost signals to both long 
and short distance wheeling 
customers
RTi =       [ Pj;Ti * Lj * Fj / (         
Pj;Ti  )  ]
RTi - price charged for  
transaction Ti
Pj;Ti – loading of  line j due to 
transaction Ti
Lj – length of  the line j
Fj – pre-determined unit cost 
reflecting the cost per unit 
capacity of  line

Incremental Cost Pricing
This pricing method seeks to 

identify the additional burden on 
a transmission system from one 
particular transaction

1. Short-Run Marginal 
Cost (SRMC) pricing: where 
the cost incurred in supplying 
an additional 1MW of  power 
in a transaction (for operation 
decisions)

2.Long-Run Marginal Cost 
(LRMC) pricing: In this long term 
planning analysis and network 
upgrades included within the 
transactions (for investment 
and location decisions) which 
includes new transmission line 
addition and power transactions 
brought about for these 
additions.

Various methods to evaluate 
Transmission Network Capacity 
use for firm transmission 
services including wheeling 
transactions. MW-Mile method 
is more reflective of  the actual 
usage of  transmission network 
in allocating the transmission 
network capacity cost than 
postage stamp method. The 
potentials for realizing greater 
economic efficiencies through 
use of  MW- mile method.

OPF BASED PRICE 
CALCLATION

OPF BASED PRICE 
CALCLATION 

1 1
( ( ) ( ))
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Problem formulation for 

Social Welfare Maximization is

j i  
j i

( D  - G + L ) 0=∑ ∑
Subjected to

i i,max(G -G )  0     :  i≤ ∀
k Z   0       : j≤ ∀

where i and j are the set of  
producers and purchasers, G and 
D their respective generation and 
consumption and producer offer 
(bid) price and purchaser benefit 
(utility) functions are given by C 
and B respectively

 L is a transmission loss 
function, 

Gi,max generator i capacity and 

Various methods to 
evaluate Transmission 
Network Capacity use 
for firm transmission 
services including wheeling 
transactions. MW-Mile 
method is more reflective 
of the actual usage of 
transmission network in 
allocating the transmission 
network capacity cost than 
postage stamp method

TRANSMISSION 
PRICING METHODS
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Zk the kth operating constraint 
In case of  price inelastic load, 

the objective is to minimize total 
generation cost subject to all 
relevant constraints 

i  i 
Gi i

 C ( G ) Min∑
•Equality constraints
-bus real and reactive power 
balance
-generator voltage set points
•Inequality constraints
-transmission line/interface flow 
limits
-generator MW and MVAR limits
-bus voltage magnitudes  

Tranactive Energy 
Markets
Transactive Energy is a system 
of  economic and control 
mechanisms that allows the 
dynamic balance of  supply and 
demand under various scenarios. 
The trans-active energy approach 
offers a way for producers and 
consumers to more closely match 
and balance energy supply 
and energy demand. Trans-
active Energy Market (TEM) 
allows consumers and utility 
companies to trade energy, which 
can improve the efficiency and 
reliability of  the power grid.  
TEM framework is proposed 
to enable and incentivize 
DER owners, including Wind 
Power Generation (WPG) and 
Hydrogen Energy Storage (HES) 
to participate in Day Ahead 
and Real time markets. The 
Transactive Energy Market 
(TEM) approach for energy 
management and trading, 
facilitates the integration and 
participation of  distributed 
energy resources (DERs) in 
existing networks using market-
based solutions for energy 
management.  Trans-active 
Energy Management is type 
of  active energy management 
optimization framework which 
examines all flexible loads and 
generations using bidirectional 
communication for information 
exchange for the of  end-use 
DERs. 

The Transactive energy 
management approach allows 
both the demand and supply 
to actively negotiate the 

exchange of  energy. Transactive 
energy, employs the Grid Wise 
Architecture Council (GWAC), 
which uses both economic 
and control methods that 
model the dynamic balance 
of  supply and demand across 
the entire electrical network. 
Transactive energy encourages 
dynamic demand-side energy 
activities based on economic 
incentives and ensures that 
the economic signals are in 
line with operational goals to 
ensure system reliability without 
resorting to override control. In 
transactive energy management, 
decision making is transferred 
to DERs. Through a distributed 
decision-making process, all 
DERs are able to decide on their 
actions in energy management, 
without revealing their private 
information.

Transactive energy markets 
offers key benefits to consumers. 
Better utilization of  grid assets 
can lower costs, especially during 
peak demand conditions. Greater 
resilience and reliability in large 
storms will reduce the length and 
frequency of  outages. Increased 
choice and information will give 
consumers greater control over 
personal energy use. Increased 
use of  renewable energy 
resources will give individual 
consumers the satisfaction of  
contributing to larger, societal 
environmental goals.

In dynamic electricity 
markets, transactive energy 
approach has many benefits to 
customers in terms of  customer 
response when the grid is 
overloaded. By providing tools 
to the customers to manage and 
adjust timing of  energy usage 
for reducing the fluctuations 
in energy through “demand 
response”. Increased use of  
cost-effective, renewable energy 
generation (especially from 
variable sources like wind and 
solar) will require new tools for 
operating the grid, and TE can 
provide these tools. Transactive 
energy enables the enhancement 
of  the reliability and resilience 
through dynamic pricing. 
Market Dynamics incentivize 
grid-responsive technologies and 
grid-friendly consumer behavior 

Transactive energy markets 
offers key benefits to 

consumers. Better utilization 
of grid assets can lower 

costs, especially during peak 
demand conditions. Greater 

resilience and reliability in 
large storms will reduce 

the length and frequency of 
outages. Increased choice 

and information will give 
consumers greater control 

over personal energy use



31A C C E L E R A T I N G  N E T  Z E R O

which help in efficiency and 
reliability.

Dynamic Pricing Markets 
of Micro Grid Energy 
Trading
A Microgrid Energy Trading 
Model incorporating dynamic 
pricing is developed which is 

based on energy economics 
which is expected to make 
profitable trading decisions. The 
model takes all the constraints 
in the system in to consideration. 
Figure 14. below show the 
working of  the Dynamic Micro 
Grid Energy Trading for 
Profitable Scheduling

Description of  the modules: 
Building a system to perform the 
following tasks of  i) forecasting 
Solar Energy production in 
the Microgrid, ii) forecasting 
the electricity price in the 
deregulated markets and iii) 
Profitable scheduling of  the loads 
in the Microgrid selected

The problem is considered as  
three parts

Part A: Forecasting: To 
forecast electrical price and 
demand in a deregulated market 
and Solar Energy generation 
in the smart grid based on 
historical data

Part B: Scheduling: To build 
a model capable of  making 
profitable decisions using the 
forecasted values in Part A  

Part C: Risk Analysis: 

(a) Architecture of micro grid model

(b) Individual models of the microgrid

Fig. 14. Microgrid Architecture Model for Dynamic Energy Trading
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Evaluate the risk due to error in 
forecasting

Solar Energy Forecast = 
Solar Irradiation x Efficiency(η)

Efficiency (η) can be obtained 
from the manufacturer 

Input parameters for 
forecasting Solar Irradiation 
using linear regression:

Historical Data (Y)
Temperature of  the day (X)

Figure 15 shows the 
linear regression approach to 
Forecasting of  Solar Irradiation 
and its dependence with 
temperature

Forecasting using Maximum temperature of  the day as input and 
Historical data (2500 days) using linear regression

Forecasting Electricity Price (Rs/kWh) using MA model is shown 
by the relation 

Price(n+1) = Price(n) + α* {Rate(n) - Moving Average(n)}
The results of  forecasting for different values of  α= 0.5, 0.65 and 

0.75 are shown in fig 16. 

(a) Solar Irradiation plot

(b) Actual Forecasted Value of Solar Irradiation

An important input to the 
decision-making activities of 
a GENCO is a good forecast 

of the market prices. 
This is important because 

an accurate forecast of 
the short-term market 

price helps the GENCO 
to bid for power sell or 

buy appropriately and 
strategically, thereby providing 

higher returns
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Electricity price forecasting is an important component energy 
trading in dynamic electricity markets.

Market Price Forecast

An important input to the 
decision-making activities of  a 
GENCO is a good forecast of  the 
market prices. This is important 
because an accurate forecast of  
the short-term market price helps 
the GENCO to bid for power 
sell or buy appropriately and 
strategically, thereby providing 
higher returns. Bilateral contract 
prices also have a tendency to be 
indirectly affected by spot-price 
trends. Thus good spot market 
price forecasts can help set up 
profitable bilateral contracts. 
In the short-term markets, 
continuous trading up to two 
hours in advance of  real time is 
possible. In these markets, the 

prices can be highly volatile to 
system conditions such as sudden 
outages, and external factors 
such as temperature variations, 
rainfall, etc. It is usually of  great 
interest to GENCOs and other 
market players to have a good 
forecast toolbox for these prices. 
Price forecast in the general 
sense also include forecast of  
futures and forward market 
prices. These forecasts may be 
carried out months or even a 
year in advance. These forecasts 
may be useful if  the GENCO 
is contemplating investments 
in generation capacity, market 
risk analysis, production and 
maintenance planning, among 
others.

(a ) Price Forecasting

(b ) Price Forecasting with different parameters

Price forecast in the general 
sense also include forecast of 
futures and forward market 
prices. These forecasts may 
be carried out months or 
even a year in advance. These 
forecasts may be useful if 
the GENCO is contemplating 
investments in generation 
capacity, market risk analysis, 
production and maintenance 
planning, among others
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In a power market, the 
price of  electricity is the 
most important signal to all 
market participants and the 
most basic pricing concept is 
market-clearing price (MCP). 
Generally, when there is no 
transmission congestion, MCP 
is the only price for the entire 
system. However, when there 

is congestion, the zonal market 
clearing price (ZMCP) or the 
Locational Marginal Price (LMP) 
could be employed. ZMCP may 
be different for various zones, 
but it is the same within a zone. 
LMP can be different for different 
buses. Figure 17 shows the power 
purchase in energy brokerage 
system.

MCP Calculation: 
After receiving bids, ISO 
aggregates the supply bids into a 
supply curve (S) and aggregates 
the demand bids into a demand 
curve (D). In Figure 17, the 
intersection of  (S) and (D) is the 
MCP.
ZMCP Calculation: 
If  at a given period, the ISO 
detects congestion along any 
transmission paths, it will adjust 
its zonal schedules at the two 
ends of  each path to relieve the 
congestion. Accordingly, the 
MCPs in the two regions could 
be different which are denoted 
as zonal MCP (or ZMCP). Using 
ZMCP, we calculate the congestion 
charge (or usage charge) for each 
congested transmission path 
across that path. 
LMP Calculation: 
LMP is the cost of  supplying the 
next MW of  load at a specific 
location, after considering the 
generation marginal cost, cost 
of  transmission congestion, and 
losses. That is, LMP is the sum 
of  generation marginal cost, 
transmission congestion cost, 
and cost of  marginal losses, 
although the cost of  losses is 
usually ignored. When there is no 

congestion, LMP is the same as 
MCP. When there is congestion, 
the optimal power flow (OPF) 
solution considers transmission 
line constraints in order to 
balance supply and demand at 
each bus. The marginal cost of  
each bus is the LMP.

Electricity Price Volatility
The most distinct property 
of  electricity is its volatility. 
Volatility is the measure of  
change in the price of  electricity 
over a given period of  time. It is 
often expressed as a percentage 
and computed as the annualized 
standard deviation of  percentage 
change in the daily price 
(other prices such as weekly or 
monthly prices can also be used), 
Compared with load, the price 
of  electricity in a restructured 
power market is much more 
volatile. From the curves, we 
learn that:

The load curve is relatively 
homogeneous and its variations 
are cyclic.

The price curve is non-
homogeneous and its variations 
show a little cyclic property.

Although electricity 
price is very volatile, it is not 

LMP is the cost of  
supplying the next MW of load 

at a specific location, after 
considering the generation 

marginal cost, cost of 
transmission congestion, and 

losses

Fig.17.  Power Purchase and Sell Bids in Energy Brokerage System
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regarded as random. Hence, it 
is possible to identify certain 
patterns and rules pertaining to 
market volatility.  For example, 
transmission congestion 
usually incurs a price spike 
which is not sustained as 
electricity price would revert 
to a more reasonable level (this 
is known as mean reversion in 
statistics). It is conceivable to 
use historical prices to forecast 
electricity prices. Accordingly, 
we use a training scheme to 
capture perceived patterns for 
forecasting electricity prices. 
The fundamental reason for 
electricity price volatility is 
that the supply and demand 
must be matched on a second-
by-second basis as follows, 
namely, Volatility in fuel price, 
Load uncertainty, Generation 
uncertainty (outages), 
Transmission Congestion, 
Behavior of  market participant 
(based on anticipated price), 
Market manipulation (market 
power, counterparty risk)

Because of  the special 
properties of  electricity, the 
price of  electricity is far more 
volatile than that of  other 
relatively volatile commodities. 
The annualized volatility of  oil 
future contracts is around 30%; 
it is around 50% for natural gas 
future contracts, while about 60% 
for electricity future contracts. 
In electricity spot markets, 
annualized volatility is above 
200%. Because of  the significant 
volatility, it is difficult to make 

an accurate forecast for the 
spot market of  electricity. This 
is evidenced by the fact that 
the existing price forecasting 
accuracy is far lower than that 
of  load forecasting. However, 
price forecasting accuracy is 
not as stringent as that of  load 
forecasting.

Need of Price forecasting
The power awarded to each 
bidder is determined based on 
the individual bid curves and 
the MCP. All the power awards 
will be compensated at the MCP. 
After the auction closes, each 
bidder aggregates all its power 
awards as its system demand, 
and performs a traditional unit 
commitment or hydrothermal 
scheduling to meet its obligations 
at minimum cost over the 
bidding horizon. Suppliers’ 
bidding decisions are coupled 
with generation scheduling 
since generator characteristics 
and how they will be used to 
meet the accepted bids in the 
future have to be considered 
before bids are submitted. 
Therefore, bidding decision must 
consider the anticipated MCP, 
generation award and costs, 
and competitor’s decisions. The 
MCP and MCQ (market clearing 
quantity) are the most important 
power market indicators. 
Forecasting the hourly MCP and 
MCQ in daily power markets is 
the most essential task and basis 
for any decision making in the 
power market.

The fundamental reason for 
electricity price volatility is 
that the supply and demand 
must be matched on a 
second-by-second basis as 
follows, namely, Volatility in 
fuel price, Load uncertainty, 
Generation uncertainty 
(outages), Transmission 
Congestion, Behavior of 
market participant (based 
on anticipated price), Market 
manipulation (market power, 
counterparty risk)

Fig.17.  Power 
Purchase and Sell 
Bids in Energy 
Brokerage 
System
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Figures 18 and 19 show the actual and forecasted electricity price 
using ARMR and ARMRX approaches respectively. These are used 
in the short time power purchases. Table1 shows the error in price 
forecasting using different methods

Short Term Power 
Purchase
In short term power purchase, 
each utility is interconnected to 
other utilities and independent 

power producers who supply 
electricity to neighboring areas. 
For an optimal power purchase 
decision several variables are to 
be considered.

Fig 19. 
Actual 

Price vs 
Forecasted 

Price of 
ARMRX 

Model

Fig 16. 
Dynamic 

Energy 
Trading 

using short 
term power 

purchase

TABLE 1.  COMPARISON OF ARMR MODEL AND ARMRX MODEL

ARMR Model ARMRX Model
MAPE 7.56% 5.40%
Standard Deviation of Errors 7.86% 5.61%
Maximum Error 31.4% 22.5%
Minimum Error -24.4% -17.4%
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The load forecasting 
accuracy that could affect the 
price decisions in a dynamic 
electricity environment, the 
estimate of  the market price that 
could affect the optimal short 
term generation scheduling in 
each utility and the network 
reliability and component 
availability that could affect the 
buy/sell decisions as well as the 
transmission access issues are 
to be considered. This article 
describes a new approach to 
make an optimum buy decision to 
maximize the utility’s operation 
or minimize the total cost 
(generation cost and buying cost) 
considering the uncertainty in 
prices. The various variables that 
are considered are the load, the 
offered prices for power, the line 
flows and the local generation. 

Conclusions and future 
Work
Dynamic Power Pricing in energy 
markets is an increasingly 
important area of  research in 
the current context of  real time 

energy trading in electricity 
markets. Many parameters 
influence the performance of  the 
Dynamic Electricity Markets. 
Load and Price forecasting are 
important constituents of  the 
study. This research addresses 
the issues of  real time energy 
trading with price forecasting, 
market clearing price and 
decision making. Market price 
forecasting has become an 
important daily activity for the 
deregulation electric power 
industry. Forecasting the Market 
Clearing Prices (MCP) of  the 
daily energy market is developed. 
Based on careful analysis, the 
model is designed to use only 
publicly available input data. The 
forecasting results show that the 
model is efficient for days with 
normal trend but for days with 
price spikes we need to consider 
a better model. 

In future work, dynamic 
pricing of  electricity using peer 
to peer energy trading using 
blockchain is a scope for further 
research. 

Dynamic Power Pricing 
in energy markets is an 
increasingly important area 
of research in the current 
context of real time energy 
trading in electricity markets. 
Many parameters influence 
the performance of the 
Dynamic Electricity Markets. 
Load and Price forecasting 
are important constituents of 
the study
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For the past century, 
chemical engineering has 
played a crucial role in 

shaping our lives. Developing a 
chemical process at the lab scale 
and taking it to the industrial 
scale is at the heart of  chemical 
engineering. Of  the numerous 
such processes, converting crude 
oil into various chemicals and 
fuels that are the backbone of  
modern life has been the most 
instrumental contribution of  
chemical engineering. However, 
these chemical processes are also 
responsible for climate change 
due to excessive greenhouse 
gas emissions. There is an 
imminent need to develop clean 
processes to produce chemicals 
and fuels sustainably and 
environment-friendly. Examples 
include conversion of  biomass 
to bio-fuels and chemicals, 
carbon capture utilization and 
sequestration (CCUS), and 
electrification. Innovations 
in novel sustainable and 
environment-friendly chemical 
processes require marrying 
interdisciplinary expertise that 
did not exist in the recent past.

Historically, developing a new 
chemical process has involved 

extensive experimentation at 
various scales, ranging from 
a catalyst particle to pilot-
scale operations, that require 
significant time and financial 
investment. There can potentially 
be millions of  possibilities for a 
new process at the design stage. 
Given this vast design space, 
a trial-and-error approach to 
experimentation is not practical 
for identifying the optimal 
design that is both scalable and 
economical. Moreover, traditional 
empirical correlations and design 
tools are often limited to a narrow 
range of  conditions, making them 
unsuitable for exploring such a 
broad design space. Consequently, 
only a limited number of  
design parameters are typically 
examined in conventional 
approaches, and this limited 
exploration decides the fate of  a 
new process.

There is a strong need 
to adopt the rational design 
approach based on scientific 
principles in chemical 
engineering. The transition 
from empirical toward rational 
design strategies, however, 
requires a level of  reliability and 
robustness in the computational 

Historically, developing  
a new chemical process 
has involved extensive 
experimentation at various 
scales, ranging from a 
catalyst particle to pilot-scale 
operations, that require 
significant time and financial 
investment
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models that is currently 
lacking. A major reason for 
this scenario is the complexity 
of  the problem. Selecting 
appropriate mathematical 
models to describe the processes 
occurring inside a chemical 
reactor is challenging. Typically, 
these models are in the form of  
partial differential equations, 
which require numerical 
solution using a computer. 
Solving these equations for real 
systems become impractical 
beyond laboratory scale. At 
the pilot and industrial scales, 
analyses often rely on simplistic 
engineering models that neglect 
the underlying physics. Examples 
include equilibrium relations and 
combinations of  ideal reactors, 
such as continuously stirred tank 
reactors (CSTR) and plug flow 
reactors (PFR).

In this context, the recent 
revolution in high performance 
computing (HPC) and ML/AI 
tools can be a gamechanger.
 Supercomputers/High-
performance computing 
(HPC): the speed of  the top 
supercomputer has been 
doubling every fourteen months 
for the last two decades
 ML/AI tools: a variety of  
algorithms are freely available 
in the form of  user-friendly and 
scalable APIs

Supercomputers can 

be used to solve detailed 
mathematical equations 
(partial differential equations) 
for larger reactors, providing 
unprecedented insights into what 
occurs inside these reactors. 
Figure 1 shows a schematic of  
detailed simulations of  fixed bed 
reactors, where each pellet is 
resolved (PR-CFD), and fluidized 
bed reactors, where each particle 
is tracked (CFD-DEM). These 
simulations allow investigating 
the coupling among different 
underlying phenomena, such 
as chemical reactions, heat 
and mass transfer, and fluid 
flow. Such detailed simulations 
were not feasible a few decades 
back. The large amount of  
high-fidelity data generated by 
supercomputers can be analysed 
using ML/AI to generate new 
knowledge and build high-
throughput engineering models. 
These high-throughput models 
can explore a vast design space 
quickly, typically within hours. 
This exploration could lead to 
innovative reactor technologies 
and intensified chemical 
processes, i.e., significantly high 
energy efficiency, selectivity, 
productivity, and lower 
environmental impact. Moreover, 
these rapid models can be 
employed to assess the scalability 
of  promising lab-scale reactors. 
However, these ideas are still in 
the exploration stage.

Such detailed simulations 
were not feasible a few 
decades back. The large 

amount of high-fidelity data 
generated by supercomputers 

can be analysed using ML/AI 
to generate new knowledge 

and build high-throughput 
engineering models

Figure 1: A schematic showing detailed computer simulations of 
commonly used reactors (fixed and fluidized bed reactors) in the 
chemical industry. High performance computing (HPC)/supercomputers 
make it possible to explore multiple physical and chemical phenomena 
(fluid flow, heat and mass transfer, chemical reactions) from individual 
particles/pellets to the complete reactor.
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India is witnessing a drastic 
growth in its supercomputing 
infrastructure, with several 
supercomputers installed in 
various parts of  the country. 
These computing facilities can 
be rented and used to perform 
simulations. Moreover, several 
vendors are available that can 
provide a wide range of  CPU 
and GPU based resources for 
specific needs of  a researcher. 
Hardware is available; however, 
we lack on the “soft” side. The 
penetration of  supercomputing 
and ML/AI advances in core 
chemical engineering is minimal. 
Addressing this gap is essential 
to take advantage of  the rapid 
growth in supercomputing and 
ML/AI tools. 

Most chemical engineering 
undergraduate and graduate 
students are not trained in high 
performance computing and ML/
AI tools. Although numerous 
programs and online materials 
are available for ML/AI, they 
are not customized for core 
engineering disciplines. There 
is a huge gap between learning 
ML/AI tools and applying them 
for core engineering problems, 
such as building a clean chemical 
process. Currently there are no 
dedicated academic curricula 
let alone training programs that 
can challenge emerging talent 
in the country to tackle some of  
its pressing challenges in energy 
domain. To this end, focusing on 
training programs and special 
conferences targeting this 
problem is imperative. Academic 
researchers and industry 
practitioners who are exploring 
HPC and ML/AI need to gear up 
in developing formal training 
material to train the human 
resources in this area.

Another challenge is 
that most experts working on 
modelling tend to focus on a 
specific aspect of  the problem 
in silos. For example, they may 
concentrate on atomic-scale, 
reactor-scale, or plant-scale 
process simulations, lacking 
coordination among these 
areas. This lack of  collaboration 
hinders the flow of  knowledge 
from bottom (small-scale 
processes) to top (large-scale 

processes) and overall goals from 
top to bottom. For instance, it 
remains unclear how to connect 
the discoveries at the catalyst 
or material level to plant-scale 
process simulations. Similarly, 
translating overall objectives 
from plant-scale process 
simulations to catalyst/material 
discovery and improvements 
is challenging. It is essential to 
foster collaboration across these 
domains. Special conferences 
and courses should be developed 
to encourage cooperation and 
knowledge sharing.

Special efforts are needed 
to build experimental setups to 
validate computer models. These 
experiments should be carefully 
designed so that computer 
simulations can be rigorously 
tested. Such experimental 
setups will bring confidence 
in the computer models. 
Currently, many experimental 
studies either don’t provide 
all the necessary information 
to simulate them or do not 
include detailed measurements. 
Continuous validation against 
new experiments will improve 
the applicability of  computer 
models. 

Over the years, funding calls 
have increasingly emphasized 
the need for measurable 
outcomes and collaboration 
with industry. This trend is 
welcoming, as it suggests that 
funded projects will foster more 
academia-industry partnerships. 
However, the industry-academia-
government cooperation need 
not be limited to advancing 
technology readiness levels 
(TRL). There is significant 
appetite in the industry to 
engage in collaborative work 
that involves the development 
of  novel technical approaches 
and techniques, analytical 
and computational tools, 
and methodologies. Often, 
the scientific and research 
community can bring about 
significant advances via physics-
based models and scientific 
computing-based correlations 
that have higher fidelity 
and, therefore, much better 
verifiability and validity.

My lab (Goyal Research 

Another challenge is that  
most experts working on 
modelling tend to focus on a 
specific aspect of the problem 
in silos. For example, they may 
concentrate on atomic-scale, 
reactor-scale, or plant-scale 
process simulations, lacking 
coordination among these 
areas
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Group) at IIT Madras is 
addressing some of  the 
challenges mentioned above. 
Even though computational 
modelling has become ubiquitous, 
its usage is unreliable due to the 
strong assumptions made in the 
physical and chemical models. To 
this end, a multiscale modelling 
approach is imperative, implying 
that models at each scale should 
be developed and rigorously 
validated against experiments. 
These validated sub-models are 
then integrated into the reactor 
simulations. This multiscale 
approach contrasts with the 
current practice of  building a 
model at the largest scale, such 
as a reactor, with numerous 
tuning parameters. This 
approach provides a model that 
functions well only for a specific 
experimental setup and within 
a narrow range of  operating 
conditions (more details are given 
in Example 1). The multiscale 
approach makes the modelling 
“clean,” minimizing the need 
for parameter tuning. Moreover, 
it can help identify which scale 
modelling efforts are required. 
Although multiscale simulations 
are suitable for a fundamental 
investigation of  a given reactor,  
they are not optimal for design 
exploration due to their high 
computational demand regarding 
simulation time and HPC 
requirements.

To this end, ML/AI tools 
are beneficial. They can help 
develop data-assisted models that 
are fast to run and enable rapid 
exploration of  large amounts of  
data (more details are given in 
Example 2). Apart from ML/AI, 
several classical mathematical 
techniques are available that can 
reduce the cost of  first-principle 
models. One such technique 
is numerical homogenization, 
which allows a complex 
structure to be represented 
as an effective medium. In 
this approach, the physical 

and chemical models remain 
the same; only the geometry 
becomes simpler. For example, 
a multiphase system can be 
represented by a porous medium. 
This simplification makes the 
meshing straightforward, and 
only a fraction of  mesh elements 
are required compared to the 
original model (more details are 
given in Example 3).

Example 1: Multiscale 
approach for biomass 
pyrolysis:
Multiphase reactors, such as 
fluidized beds, are suitable 
for large-scale catalytic or 
non-catalytic thermochemical 
conversion - pyrolysis or 
gasification, of  biomass and 
plastic. These reactors exhibit 
a large separation of  scales, 
ranging from a single particle 
to the reactor, making their 
computational and experimental 
investigation challenging. The 
small-scale processes, such as 
chemical reactions and intra-
particle phenomena inside a 
single particle, are strongly 
coupled with the multiphase 
reactor hydrodynamics and can 
have a substantial impact on the 
reactor performance. To address 
these challenges, we develop 
a multiscale computational 
framework coupling 
experimentally validated 
biomass devolatilization kinetics 
and spatially resolved biomass 
particle devolatilization model 
in a CFD–DEM framework. 
The devolatilization chemistry 
is represented by the detailed 
multistep kinetic scheme 
consisting of  19 solid species, 20 
gaseous species, and 24 reactions 
developed by the CRECK group. 
Biomass pyrolysis in a fluidized 
bed reactor at 500 °C is simulated 
using the developed multiscale 
model. The impact of  particle-
scale biomass devolatilization 
models on the reactor 
performance was evaluated.

These validated sub-models 
are then integrated into the 

reactor simulations. This 
multiscale approach contrasts 

with the current practice of 
building a model at the largest 
scale, such as a reactor, with 
numerous tuning parameters.
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Example 2: ML/AI for 
data-assisted modelling 
and data exploration
CFD simulations of  chemical 
reactors using detailed 
chemical kinetic models 
are challenging in terms of  
numerical complexity and run 
time. Detailed kinetic models 
include radical species that span 
a wide range of  time scales, 
making the resulting system of  
ODEs stiff. Solving a large, stiff  
system of  ODEs in multiphase 
CFD simulations puts a strict 
restriction on the time step, 
rendering such simulations 
impractical even for laboratory-
scale reactors. Moreover, these 
simulations face convergence 
issues. For this reason, most 
reactor CFD simulations rely 
on global kinetics, even when 
detailed kinetic schemes are 
available. To address these 
challenges, we developed a gated 
recurrent unit (GRU) based 
recurrent neural network (RNN) 
model to predict the reactants 
and product evolution along a 

fluidized bed reactor length. The 
developed ML model is applied to 
predict biomass thermochemical 
conversion at 800–1000 oC in a 
fluidized bed reactor. Biomass 
devolatilization and gas-phase 
chemistries are represented by 
kinetic schemes comprising 20 
species with 24 reactions and 
39 species with 118 reactions, 
respectively. Generating a large 
amount of  training data needed 
to train the GRU-RNN model 
directly from CFD simulations is 
impractical. To this end, reactor 
network models comprising ideal 
reactors are used to generate 
the training data. A wide range 
of  biomass compositions and 
operating conditions are used, 
ensuring model generality. The 
developed ML model predictions 
are in reasonable agreement 
with the expensive CFD-DEM 
simulations. The ML model 
reduces the computational cost 
of  CFD-DEM simulations by 
10 orders of  magnitude. Figure 
3 provides a schematic of  the 
overall methodology.

The developed ML model is 
applied to predict biomass 
thermochemical conversion 
at 800–1000 oC in a fluidized 
bed reactor. Biomass 
devolatilization and gas-phase 
chemistries are represented 
by kinetic schemes comprising 
20 species with 24 reactions 
and 39 species with 118 
reactions, respectively. 
Generating a large amount of 
training data needed to train 
the GRU-RNN model directly 
from CFD simulations is 
impractical.

Figure 2: An example of multiscale approach for modeling biomass 
pyrolysis. Kinetic model for biomass devolatilization chemistry, a one-
dimensional intraparticle model for individual biomass particles, and CFD-
DEM model for a fluidized bed reactors are validated against experiments 
and coupled together. [Taken from Kumar and Goyal, React. Chem. Eng., 
2024, 9, 2552]
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In addition to developing fast 
data-assisted models, ML can be 
used to explore and analyze the 
large amount of  data generated 
from computer simulations. We 
recently deployed DBSCAN – an 
unsupervised machine learning 
technique, to capture multiphase 
features, such as bubbles in 
a fluidized bed reactor. The 
methodology is user-friendly 
and scalable. Figure 4 shows 
representative results, where Fig 

4a shows the visualization made 
in commercial software (ANSYS 
Ensight), and Fig 4b shows the 
prediction of  DBSCAN-based 
methodology. Apart from 
visualization, the technique 
provides all the statistics related 
to the bubbles, such as size, 
shape, surface area, volume, 
and maximum chord length. 
We are working on extending 
this technique to other complex 
multiphase reactors.

In addition to developing  
fast data-assisted models, 
ML can be used to explore 

and analyze the large amount 
of data generated from 

computer simulations. We 
recently deployed DBSCAN 

– an unsupervised machine 
learning technique, to capture 
multiphase features, such as 

bubbles in a fluidized  
bed reactor

Figure 3: Schematic showing how ML can be used to build fast models 
for complex chemical reactors. [Taken from Kumar et al., Ind. Eng. 
Chem. Res. 2025, 64, 2, 999–1010.]

Figure 4: 
Schematic 
demonstrating 
the utility of 
unsupervised 
machine learning 
algorithms in 
identifying 
bubbles and 
obtaining their 
properties from 
CFD simulations 
of a fluidized bed 
reactor. [Taken 
from Kumar and 
Goyal, AIChE J. 
2024, 70:e18360.]
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Example 3: Fast 
reactor models using 
homogenization:
The large separation of  length 
scales in multiphase chemical 
reactors from an active catalyst 
site to the entire reactor makes 
simulations computationally 
expensive. This issue can be 
addressed with homogenization 
methodology by developing 
physics-based high throughput 
models. This technique 
transforms the point-wise 
mathematical description into 
averaged equations utilizing the 
effective medium properties. The 
computational cost associated 
with the homogenized (effective) 
phase is much lower than that of  
the original multiphase system. 

We have successfully 
employed this approach for 
monolith reactors and microwave 

heating. Figure 5 illustrates 
the central concept behind this 
technique. Detailed simulations 
of  a unit cell are performed, and 
the resulting simulation data is 
used to evaluate effective medium 
properties, such as permittivity 
and thermal conductivity, needed 
for the averaged equations. 
By employing this method, 
we achieve several orders of  
magnitude reduction in the 
number of  mesh elements 
and simulation time. At the 
same time, the overall three-
dimensional profiles can still 
be obtained as predicted by the 
detailed simulations. We are 
extending this methodology 
to more complex reactors, 
such as fixed beds, where 
particle-resolved simulations 
are extremely challenging to 
perform.

Figure 5: Schematic of how homogenization can be used to represent a 
complex multiphase system as a simple porous medium. This approach 
can be used for structured reactors and fixed bed reactors, making their 
optimization feasible. [Adapted from Kavale et al., Ind. Eng. Chem. Res. 
2023, 62, 45, 19004–19018]
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